Role of biotin-containing membranes and nuclear distribution in differentiating human endometrial cells

Author(s):  
Honoree Fleming ◽  
Rebekah Condon ◽  
Genevieve Peterson ◽  
Ilse Guck ◽  
Elizabeth Prescott ◽  
...  
2021 ◽  
Vol 2 (2) ◽  
pp. 68-84
Author(s):  
Marwan Habiba ◽  
Donatella Lippi ◽  
Giuseppe Benagiano

Through microscopy, early researchers identified the epithelium on the inner surfaces of the uterus, cervix and Fallopian tubes. The identification of ectopic epithelium was gradual, starting from the gross pathology study of unusual cystic lesions. Towards the end of the nineteenth century, attention focused on the epithelium as a critical component. The term ‘adenomyoma’ was coined around eighteen eighty to designate the majority of mucosa-containing lesions. Several theories were advanced to explain its aetiology. In the main, lesions were considered to arise from invasion from uterine epithelium; implantation of endometrium through retrograde menstruation; hematogenous or lymphatic spread; or from embryonic remnants. Although initially widely rejected, around 1920, an almost unanimous consensus formed on the endometrial nature of epithelial invasions. During the following years, adenomyosis and endometriosis came to be used to distinguished lesions within or outside the uterus. Adenomyosis was attributed to direct infiltration of uterine mucosa into the myometrium, and endometriosis to the implantation of endometrial cells and stroma into the peritoneal cavity through retrograde menstruation. Around the same time, ovarian lesions, initially described as ovarian hematomas or chocolate cysts, were regarded as a form of endometriosis. Three variants of endometriosis were thus described: superficial peritoneal, deep nodular and ovarian endometriomas. Ectopic epithelium has long been recognised as having similarities to tubal, or cervical epithelium. Lesions containing mixed epithelium are often termed Müllerianosis. This article demonstrates the stepwise evolution of knowledge, the role of the pioneers and the difficulties that needed to be overcome. It also demonstrates the value of collaboration and the inter-connected nature of the scientific endeavour.


Author(s):  
Dariusz Szukiewicz ◽  
Aleksandra Stangret ◽  
Carmen Ruiz-Ruiz ◽  
Enrique G. Olivares ◽  
Olga Soriţău ◽  
...  

AbstractEndometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5827
Author(s):  
Jae Chul Lee ◽  
Sung Hoon Kim ◽  
Young Sang Oh ◽  
Ju Hee Kim ◽  
Sa Ra Lee ◽  
...  

Although endometriosis is a benign disease characterized by the presence of endometrial tissues outside the uterus, ectopic endometrial cells can exhibit malignant biological behaviors. Retinol-binding protein4 (RBP4) is a novel adipocyte-derived cytokine, which has important roles in regulating insulin sensitivity and energy metabolism. RBP4 is a potent modulator of gene transcription, and acts by directly controlling cell growth, invasiveness, proliferation and differentiation. Here, we evaluated the possible role of RBP4 in the pathogenesis of endometriosis. We compared the levels of RBP4 in the tissues and peritoneal fluid (PF) of women with and without endometriosis and evaluated the in vitro effects of RBP4 on the viability, invasiveness, and proliferation of endometrial stromal cells (ESCs). RBP4 levels were significantly higher in the PF of the women in the endometriosis group than in the controls. RBP4 immunoreactivity was significantly higher in the ovarian endometriomas of women with advanced stage endometriosis than those of controls. In vitro treatment with human recombinant-RBP4 significantly increased the viability, bromodeoxyuridine expression, and invasiveness of ESCs. Transfection with RBP4 siRNA significantly reduced ESC viability and invasiveness. These findings suggest that RBP4 partakes in the pathogenesis of endometriosis by increasing the viability, proliferation and invasion of endometrial cells.


GYNECOLOGY ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 93-100
Author(s):  
Victor E. Radzinsky ◽  
Mekan R. Orazov ◽  
Liliia R. Toktar ◽  
Liudmila M. Mihaleva ◽  
Pavel A. Semenov ◽  
...  

Chronic endometritis (CE) is defined as a state of inflammation localized in the endometrium, accompanied by edema, dissociated maturation of epithelial cells and fibroblasts, increased stromal density and the presence of plasma cell infiltrate in it. The connection between chronic inflammation in the endometrium and infertility deserves special attention. Inadequate response of immunocompetent endometrial cells, including impaired synthesis of proinflammatory cytokines, dysreceptiveness, disorders of proliferation and differentiation processes are the main links in the formation of infertility in patients with CE. Despite the fact that the presence of a normocenosis of the uterine cavity today is not in doubt this is a physiological norm, persistent bacterial infection of the endometrium is still called the main etiopathogenetic factor of CE and, therefore, the main point of application of therapeutic agents. Nevertheless, a number of works have emphasized the special role of not bacterial, but viral etiology of endometritis, especially in the context of infertility developing against this background. It seems that the role of viral endometrial infection in adverse pregnancy outcomes and in vitro fertilization programs is underestimated. Further research is needed to clarify the relationship of viral infection as a trigger of implantation failure in infertile women with CE.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
C. Mannelli ◽  
F. Ietta ◽  
C. Carotenuto ◽  
R. Romagnoli ◽  
A. Z. Szostek ◽  
...  

A proper fetomaternal immune-endocrine cross-talk in pregnancy is fundamental for reproductive success. This might be unbalanced by exposure to environmental chemicals, such as bisphenol A (BPA). As fetoplacental contamination with BPA originates from the maternal compartment, this study investigated the role of the endometrium in BPA effects on the placenta. To this end,in vitrodecidualized stromal cells were exposed to BPA 1 nM, and their conditioned medium (diluted 1 : 2) was used on chorionic villous explants from human placenta. Parallel cultures of placental explants were directly exposed to 0.5 nM BPA while, control cultures were exposed to the vehicle (EtOH 0.1%). After 24–48 h, culture medium from BPA-treated and control cultures was assayed for concentration of hormone human Chorionic Gonadotropin (β-hCG) and cytokine Macrophage Migration Inhibitory Factor (MIF). The results showed that direct exposure to BPA stimulated the release of both MIF andβ-hCG. These effects were abolished/diminished in placental cultures exposed to endometrial cell-conditioned medium. GM-MS analysis revealed that endometrial cells retain BPA, thus reducing the availability of this chemical for the placenta. The data obtained highlight the importance ofin vitromodels including the maternal component in reproducing the effects of environmental chemicals on human fetus/placenta.


2022 ◽  
Vol 12 (3) ◽  
pp. 506-513
Author(s):  
Ying Lv ◽  
Liyan Ye ◽  
Xiujuan Zheng

This study aimed to explore the role of ATI-2341 in Asherman’s syndrome and its impact on menstrual blood-derived mesenchymal stem cells (MenSCs). Following establishment of endometrial injury model, MenSCs were extracted from rats and cultured. They were treated with ATI-2341 TFA at different concentrations (10 ng/mL, 50 ng/mL, 100 ng/mL) and MenSCs treated without ATI-2341 TFA were taken as controls. Flow cytometry was conducted to detect the cell cycle. MTT was carried out to evaluate proliferation of endometrial cells. The expression levels of MMP-9, TIMP-1, CK, and VIM were determined with staining used to reflect morphology of endometrium. Administration with ATI-2341 TFA resulted in decreased expression of MMP-9 and increased expression of TIMP-1 in a dose-dependent manner. Of note, the increase of ATI-2341 TFA concentration was accompanied with elevated cell proliferation rate, increased number of glands in the endometrium, and decreased fibrosis area. As treated with 100 ng/mL ATI-2341 TFA, the cells exhibited more glands than that under other concentrations with uniformly arranged glands and lowest expression levels of CK and VIM, control group had plenty of blue-stained collagen fibers in the intima and least amount of glands. ATI-2341 TFA 100 ng/mL induced endometrial epithelial recruitment effect on MenSCs and promoted endometrial repair more significantly than Gi-3 pathway agonists. Collectively, ATI-2341 TFA enhances MenSC recruitment and facilitates endometrial epithelial cells proliferation and the repair of uterine damage in Asherman’s syndrome through Gi pathway. These findings provide a\ novel insight into the MenSC-based treatment against Asherman’s syndrome and deserve further investigation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Liu

Abstract Study question Could endometrial extracellular vesicles from recurrent implantation failure patients (RIF-EVs) attenuate the growth and implantation potentials of embryos and what are the mechanisms? Summary answer: RIF-EVs inhibited embryonic growth and decreased the trophoblast functions via miR–6131/PAK2 pathway. What is known already Recurrent implantation failure (RIF) is characterized by repeated embryo transfers without pregnancy. To date, the etiology of RIF remains poorly understood. Recent evidence indicated that extracellular vesicles (EVs) secreted by endometrial cells, played a crucial role in the implantation by regulating the development and implantation of embryos. Study design, size, duration Endometrial cells isolated from endometrial tissues of RIF patients (n = 25) and fertile women (n = 16) were cultured and modulated via hormones. Endometrial EVs from RIF patients (RIF-EVs) or fertile women (FER-EVs) were isolated from the conditioned medium. The influence of EVs on embryonic development and implantation was investigated by co-culture models of EVs and 2-cell murine embryos or HTR8/SVneo cells, respectively. High-through put sequencing was performed to identify the miRNA profile in the RIF-EVs. Participants/materials, setting, methods RIF-EVs and FER-EVs were characterized using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. After co-culture with EVs, embryonic blastocyst rate and hatching rate were calculated. Besides, the proliferation, migration, and invasion of EV-treated trophoblast cells were evaluated by CCK–8, wound healing, and transwell invasion assays. miRNA expression profiles were compared between RIF-EVs and FER-EVs, and the regulatory role of significantly upregulated miR–6131 in RIF-EVs was investigated in the trophoblast cells. Main results and the role of chance RIF-EVs and FER-EVs are round bilayer vesicles, ranging mainly at 100 nm and enriched in TSG101, Alix, and CD9. Both RIF-EVs and FER-EVs entered embryonic or trophoblast cytoplasm. The blastocyst rate in the RIF-EV groups was significantly decreased compared to that in the FER-EV groups, at concentrations of 5, 10, and 20 μg/ml. The hatching rate was decreased significantly in embryos treated with 10 or 20 μg/ml RIF-EVs compared to those treated with FER-EVs at the same concentration (p < 0.05). The proliferation, migration, and invasion of trophoblasts were significantly decreased in the RIF-EV group at 20 μg/mL. A total of 11 differently expressed (fold change >2 and p < 0.05) miRNAs were found in the RIF-EVs, and two of them were validated in a larger set of EV samples using RT-PCR. The most significantly different miRNA, 6131, was increased in the RIF-EV-treated HTR8/SVneo cells. The up-regulation of miR–6131 inhibited the growth and invasion of HTR8/SVneo. Bioinformatics coupled with luciferase and western blot assays revealed that PAK2 is a direct target of miR–6131, and the overexpression of PAK2 can rescue the phenotype changes induced by miR–6131 overexpression. Limitations, reasons for caution Our study indicated miRNA in the RIF-EVs dysregulating the growth and function of embryonic cells. However, EVs contained a wide spectrum of bioactive molecules, including proteins, mRNAs, and DNA, which may play an important role in the implantation. Further studies are required to investigate the mechanisms. Wider implications of the findings: This work indicates an important role of EVs from women with RIF in embryonic implantation, potentially providing a novel insight to understand the pathophysiology of RIF. Trial registration number Not applicable


2018 ◽  
Vol 19 (8) ◽  
pp. 2320 ◽  
Author(s):  
Greta Cermisoni ◽  
Alessandra Alteri ◽  
Laura Corti ◽  
Elisa Rabellotti ◽  
Enrico Papaleo ◽  
...  

Growing evidence supports a role of vitamin D (VD) in reproductive health. Vitamin D receptor (VDR) is expressed in the ovary, endometrium, and myometrium. The biological actions of VD in fertility and reproductive tissues have been investigated but mainly using animal models. Conversely, the molecular data addressing the mechanisms underlying VD action in the physiologic endometrium and in endometrial pathologies are still scant. Levels of VDR expression according to the menstrual cycle are yet to be definitively clarified, possibly being lower in the proliferative compared to the secretory phase and in mid-secretory compared to early secretory phase. Endometrial tissue also expresses the enzymes involved in the metabolism of VD. The potential anti-proliferative and anti-inflammatory effects of VD for the treatment of endometriosis have been investigated in recent years. Treatment of ectopic endometrial cells with 1,25(OH)2D3 could significantly reduce cytokine-mediated inflammatory responses. An alteration of VD metabolism in terms of increased 24-hydroxylase mRNA and protein expression has been demonstrated in endometrial cancer, albeit not consistently. The effect of the active form of the vitamin as an anti-proliferative, pro-apoptotic, anti-inflammatory, and differentiation-inducing agent has been demonstrated in various endometrial cancer cell lines.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaomei Luo ◽  
Wei Cheng ◽  
Shizhang Wang ◽  
Zhihong Chen ◽  
Jieqiong Tan

Objective. Autophagy has been reported to be involved in the development of various disorders such as neurodegenerative and metabolic diseases and tumors. Autophagy activators and inhibitors are also potential therapeutics for these diseases. However, the mechanism of autophagic involvement in different diseases is not the same, and the role of autophagy in endometriosis (EM) has not yet been elucidated. This research investigated the mechanism by which autophagy acts in EM, with the aim of establishing a theoretical basis for its prevention and treatment through the targeted interference with autophagy. Methods. We used an RNA interference fragment targeting ATG5, the autophagy activator rapamycin, and the autophagy inhibitor 3-MA or overexpression of filopodia-related protein fascin-1, in conjunction with clonogenic assays, growth curves, and scratch assay to investigate the influence of autophagy on cellular growth, proliferation, and invasiveness. We collected specimens from 20 clinical cases of EM and investigated the protein expression of the autophagic marker LC3-II, the autophagic substrate p62, and fascin-1. Results. Rapamycin was able to inhibit the proliferation and colony formation of the endometriotic cell line CRL-7566, whereas the autophagy inhibitor 3-MA as well as the interference with the autophagy-related gene ATG5 had the opposite effect. More importantly, the autophagy activator rapamycin was able to inhibit the growth of filopodia in the endometriotic cells, and the overexpression of the fascin-1 restored the rapamycin-induced decrease of invasiveness. We found that the expression of the autophagy marker LC3-II was significantly reduced among the clinical EM specimens compared to the control group, while the expressions of fascin-1 and autophagic substrate p62 were increased. Conclusion. Our results indicate that the inhibition of autophagy and exogenous expression of fascin-1 may promote the invasiveness of endometrial cells. As a corollary, autophagy represents a potential target for the treatment of EM.


2016 ◽  
Vol 62 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Rita de Cássia Pereira da Costa e Silva ◽  
Kátia Karina Verolli de Oliveira Moura ◽  
Circoncisto Laurentino Ribeiro Júnior ◽  
Lidia Andreu Guillo

SUMMARY Even though the physiological role of estrogen in the female reproductive cycle and endometrial proliferative phase is well established, the signaling pathways by which estrogen exerts its action in the endometrial tissue are still little known. In this regard, advancements in cell culture techniques and maintenance of endometrial cells in cultures enabled the discovery of new signaling mechanisms activated by estrogen in the normal endometrium and in endometriosis. This review aims to present the recent findings in the genomic and non-genomic estrogen signaling pathways in the proliferative human endometrium specifically associated with the pathogenesis and development of endometriosis.


Sign in / Sign up

Export Citation Format

Share Document